Chipster Tutorials
Chipster Tutorials
  • Видео 167
  • Просмотров 705 915

Видео

scRNA-seq -Integrated analysis: Aligning samples and clustering
Просмотров 31Месяц назад
Learn how Seurat (v3 - v5) tools align two samples so that the cells in both samples can be clustered and analysed. View Ahmed Mahfouz's (Leiden Computational Biology Center, LUMC, Netherlands) presentation about the Seurat v3 alignment method and more about the integration step in general: ruclips.net/video/4KwW90RQz-8/видео.html View Rahul Satija's (Seurat is developed in Satija's lab) own ve...
scRNA-seq -Integrated analysis: Conserved markers and differentially expressed genes (Seurat v5)
Просмотров 32Месяц назад
In this third video of the two sample analysis pipeline, we will see how to get the conserved cluster markers and the differentially expressed genes between the samples, and how to visualise genes/gene lists.
scRNAseq: Pseudobulk analysis
Просмотров 54Месяц назад
Why and how to do pseudobulk analysis in Chipster. More info on pseudobulk: Article: "Confronting false discoveries in single-cell differential expression", Squair, J.W., Gautier, M., Kathe, C. et al. Confronting false discoveries in single-cell differential expression. Nat Commun 12, 5692 (2021). doi.org/10.1038/s41467-021-25960-2 rdcu.be/dLXcR Seurat vignette: satijalab.org/seurat/articles/pa...
8 Visium data (2024): Integration with single-cell RNA-seq reference data
Просмотров 68Месяц назад
This is the eighth video of the updated Visium spatial transcriptomics data analysis playlist. In this video, we show how perform integration with a single cell RNA-seq reference data set.
7 Visium data (2024): Subsetting out anatomical regions
Просмотров 33Месяц назад
This is the seventh video of the updated Visium spatial transcriptomics data analysis playlist. In this video, we show how to subset out clusters of anatomical regions.
6 Visium data (2024): Visualizing gene expression and identifying spatially variable genes
Просмотров 75Месяц назад
This is the sixth video of the updated Visium spatial transcriptomics data analysis playlist. In this video, we show how visualize gene expression of selected genes, and how to identify spatially variable genes.
9 Visium data (2024): Analysis with multiple samples
Просмотров 33Месяц назад
This is the ninth video of the updated Visium spatial transcriptomics data analysis playlist. In this video, we show how perform the analysis with multiple samples.
5 Visium data (2024): Clustering
Просмотров 37Месяц назад
This is the fifth video of the updated Visium spatial transcriptomics data analysis playlist. In this video, we show how perform the clustering step.
4 Visium data (2024): Normalization and PCA
Просмотров 52Месяц назад
This is the fourth video of the updated Visium spatial transcriptomics data analysis playlist. In this video, we show how to perform the normalization and PCA step.
3 Visium data (2024): Filtering
Просмотров 45Месяц назад
This is the third video of the updated Visium spatial transcriptomics data analysis playlist. In this video, we show how perform the filtering step to filter out low-quality spots.
2 Visium data (2024): Setup and quality control
Просмотров 67Месяц назад
This is the second video of the updated Visium spatial transcriptomics data analysis playlist. In this video, we show how to set up the Seurat object for the analysis. This step also produces quality control plots.
scRNA-seq: Remove background contamination with CellBender
Просмотров 5486 месяцев назад
In this lecture you will learn -What is background contamination -How to remove it with CellBender in Chipster
8 Visium data: Subset and integrate with single-cell data (update, August 2023)
Просмотров 243Год назад
This video describes the steps in integration with single-cell data in spatial transcriptomics analysis.
5b. Trimming and filtering single-end reads (Ion Torrent data)
Просмотров 327Год назад
This tutorial covers trimming and filtering single end reads such as Ion Torrent data.
scRNA-seq: Quality control and filtering cells (update, July 2023)
Просмотров 978Год назад
scRNA-seq: Quality control and filtering cells (update, July 2023)
5a. Filter contigs and remove identical sequences
Просмотров 147Год назад
5a. Filter contigs and remove identical sequences
4b. Converting VSEARCH contigs for Mothur analysis
Просмотров 130Год назад
4b. Converting VSEARCH contigs for Mothur analysis
4a. Expected error filtering with VSEARCH
Просмотров 124Год назад
4a. Expected error filtering with VSEARCH
3. Combine paired reads to contigs with VSEARCH
Просмотров 323Год назад
3. Combine paired reads to contigs with VSEARCH
scRNA-seq: Normalize gene expression values with SCTransform
Просмотров 1,7 тыс.Год назад
scRNA-seq: Normalize gene expression values with SCTransform
scRNA-seq: SingleR annotations
Просмотров 663Год назад
scRNA-seq: SingleR annotations
scRNA-seq: Extract information from Seurat object
Просмотров 1,3 тыс.Год назад
scRNA-seq: Extract information from Seurat object
scRNA-seq: Quality control and filtering cells (update, June 2023)
Просмотров 791Год назад
scRNA-seq: Quality control and filtering cells (update, June 2023)
9 Visium data: Identifying cell types using deconvolution
Просмотров 881Год назад
9 Visium data: Identifying cell types using deconvolution
8 Make a phyloseq object for ASV data in Chipster
Просмотров 1,1 тыс.Год назад
8 Make a phyloseq object for ASV data in Chipster
6 Make an ASV table and remove chimeras with DADA2
Просмотров 537Год назад
6 Make an ASV table and remove chimeras with DADA2
7 Assign Taxonomy with DADA2
Просмотров 704Год назад
7 Assign Taxonomy with DADA2
4 Sample (ASV) inference with DADA2
Просмотров 1 тыс.Год назад
4 Sample (ASV) inference with DADA2
5 Combine paired reads to contigs with DADA2
Просмотров 314Год назад
5 Combine paired reads to contigs with DADA2

Комментарии

  • @afraanan9979
    @afraanan9979 4 дня назад

    Could you please describe what does the "If the quality difference is less than 6, the consensus base is set to N" mean?

  • @fp2551
    @fp2551 25 дней назад

    Nice explanation, thank you!

  • @HeLiAn5
    @HeLiAn5 2 месяца назад

    So helpful content, thank you so much!

  • @HeLiAn5
    @HeLiAn5 2 месяца назад

    Thank you so much for the helpful information! Is it possible to have these slides of the RNA-Seq course?

  • @nikitamaurya4518
    @nikitamaurya4518 3 месяца назад

    Audio is not clear, hardly understood anything.

  • @nikitamaurya4518
    @nikitamaurya4518 3 месяца назад

    love this!

  • @supakornpongpakdee1544
    @supakornpongpakdee1544 3 месяца назад

    Hi, Thank you for the informative tutorial! However, I got the error when the epoch reached to the checkpoints: cellbender typeerror: cannot pickle 'weakref.referencetype' object Would you mind telling me how to solve this issue? Thank you very much in advance.

    • @xiaoliu1446
      @xiaoliu1446 3 месяца назад

      I got a similar error when using python 3.8. Switching to python 3.7 with cellbender solved this issue.

  • @karolinawarzecha4789
    @karolinawarzecha4789 4 месяца назад

    Such a great lecture, easy to follow and full of valuable information, also great questions! Thank you for sharing!

  • @user-uh6ms8yj5g
    @user-uh6ms8yj5g 4 месяца назад

    RT happens before breaking the gel beads not before, right?

    • @ChipsterTutorials
      @ChipsterTutorials Месяц назад

      That is correct, good catch! Here's a nice video explaining the wet lab procedure in more detail: ruclips.net/video/uFrrKHB9weY/видео.htmlsi=F1fa6-XipaLcg1iq&t=406

  • @jacksonhua6614
    @jacksonhua6614 5 месяцев назад

    is he smoking while presenting

  • @mohamadpirouzfar6056
    @mohamadpirouzfar6056 7 месяцев назад

    thank you for the presentation. What is the method of keeping unaligned reads by excluding reads aligned to the host using BWA?

    • @ChipsterTutorials
      @ChipsterTutorials 7 месяцев назад

      The VirusDetect pipeline takes care of this internally. I don't remember the details, but this could be accomplished for example using the samtools command "samtools view -b -f 4 file.bam > unmapped.bam"

  • @Leooo12312
    @Leooo12312 9 месяцев назад

    The voice is not very clear.

  • @mahdiyehbigham6357
    @mahdiyehbigham6357 9 месяцев назад

    Amazing teacher

  • @andylau7268
    @andylau7268 10 месяцев назад

    Great job. Wondering if there are any further updates regarding the cell segment free software, over the past year? Thank you for sharing~~!

  • @jakobhansen5477
    @jakobhansen5477 11 месяцев назад

    Very nice introduction to filtering and QC!

  • @merogazal
    @merogazal 11 месяцев назад

    I am watching from Taiwan. How can I use Chipster to analyze my own data?

  • @jeanjacqueskubwimana8362
    @jeanjacqueskubwimana8362 11 месяцев назад

    Thank you for this interesting work. It really support us.

  • @NIPTMED
    @NIPTMED Год назад

    Bowtie2. I use it for aligment with reference before I call variant by GATK ?

  • @user-qm7cf8gs8k
    @user-qm7cf8gs8k Год назад

    Can i get the ppt?

  • @ameliac504
    @ameliac504 Год назад

    Well done!

  • @Zakhoy92
    @Zakhoy92 Год назад

    all I need is a permanent chipster tool in my life, is that too much to ask for? :D

  • @javiflaja4063
    @javiflaja4063 Год назад

    Thanks a lot for sharing this content! I cleared many doubts, including the order between local realignment and BQSR

  •  Год назад

    Thank you Chipster Tutorials. Greetings from a bioeng grad student.

  • @paramountsandiago8618
    @paramountsandiago8618 Год назад

    bravo

  • @user-wd6mu9tg5z
    @user-wd6mu9tg5z Год назад

    what do you think about filtering out ALL mitochondrial genes?

  • @mahamoussa5712
    @mahamoussa5712 Год назад

    Thank you so mus!

  • @aayushinotra7945
    @aayushinotra7945 Год назад

    great job keep on posting such videos

  • @kiplimosimon1429
    @kiplimosimon1429 Год назад

    excellent work

  • @Sajgoniarz
    @Sajgoniarz Год назад

    Cant focus because of that "rubbing" in the background.

    • @ChipsterTutorials
      @ChipsterTutorials Год назад

      This is a live recording from a course, so unfortunately the sound quality is not the same as for the videos we make in a normal recording setup.

  • @shapopikamanja4006
    @shapopikamanja4006 Год назад

    Thank you for the videos!

  • @stanyang4321
    @stanyang4321 Год назад

    Hii! I have three SRA data with each having different samples. So how and at what step should I merge them all together

    • @ChipsterTutorials
      @ChipsterTutorials Год назад

      Aligning reads to reference and counting aligned reads per genes (e.g. with HTSeq) is done separate for each sample. You can then combine the count files together to a count table where the rows are genes and columns are samples. Using this table you can then look for statistically significantly differentially expressed genes with tools like DESeq2.

  • @keithgoddard4192
    @keithgoddard4192 Год назад

    This was really very helpful, especially the statistical properties section. Although all the characteristics you mention are obvious after they have been pointed out, it's not necessarily an intuitive thing that you automatically realize.

  • @PalfraDK
    @PalfraDK Год назад

    the echo is horrible

  • @romanatorx3949
    @romanatorx3949 Год назад

    In part 1 you removed mitochondrial genes, but in part 2 you use them for filtering? Why?

    • @ChipsterTutorials
      @ChipsterTutorials Год назад

      Good point! In this example data the mitochondrial genes had actually already been removed from the data. In part 2 it is shown how to filter out the spots that have high percentage of mitochondrial transcripts if your data has them.

  • @llsa2009
    @llsa2009 Год назад

    Too many “er” during the presentation

  • @AjayPal-fj6fc
    @AjayPal-fj6fc Год назад

    very very good .b

  • @AjayPal-fj6fc
    @AjayPal-fj6fc Год назад

    very good .b

  • @neurostudywithme
    @neurostudywithme Год назад

    Thank you! It was really helpful

  • @2z4499
    @2z4499 Год назад

    Long time

  • @Dr.HebaNabil
    @Dr.HebaNabil Год назад

    excellent and easy illustration, thank you

  • @mananlalit
    @mananlalit Год назад

    Beautiful presentation. Very nicely explained and straight forward schematics!

  • @MissAsdfb99
    @MissAsdfb99 2 года назад

    What if we are getting an error like "id line did not start with @"?

    • @ChipsterTutorials
      @ChipsterTutorials 2 года назад

      This means that your file is corrupted. Please see the possible solutions proposed by Simon Andrews at github.com/s-andrews/FastQC/issues/37

  • @MissAsdfb99
    @MissAsdfb99 2 года назад

    Thank you for your information but how to do ? I mean we need to use a program for quality control? Is there any specific program?

    • @ChipsterTutorials
      @ChipsterTutorials 2 года назад

      For read quality we recommend the FastQC program, or MultiQC for many samples. We have integrated them (and many other programs) in the Chipster analysis software which runs in a Web browser. For more info, please see chipster.csc.fi/.

    • @MissAsdfb99
      @MissAsdfb99 2 года назад

      @@ChipsterTutorials Thank you and what if we zipped the FASTQ file , doest it be any problem? or it doesn't matter?

    • @ChipsterTutorials
      @ChipsterTutorials 2 года назад

      @@MissAsdfb99 gzipped FASTQ files work fine in Chipster, no problem :)

  • @shiwanisharma8411
    @shiwanisharma8411 2 года назад

    Very nice introduction, thank you.

  • @wasima4463
    @wasima4463 2 года назад

    too many filler words aaaaaaa... next time prepare well. Also, please fix your mic

    • @ChipsterTutorials
      @ChipsterTutorials 2 года назад

      Thank you for your comment -please note, that this is a recorded live lecture of our guest lecturer. Thus we cannot redo this video.

    • @wasima4463
      @wasima4463 Год назад

      @@ChipsterTutorials well then convey my feedback to your guest lecturer or next time select someone who does not stutter a lot

    • @ameliac504
      @ameliac504 Год назад

      Maybe its due to fact that his primary language isn't English

  • @jayceldianneala4886
    @jayceldianneala4886 2 года назад

    whats the commandline for genotype gvcf?

  • @singhh5050
    @singhh5050 2 года назад

    At what stage in the analysis workflow can you use gene set enrichment analysis (GSEA)?

    • @ChipsterTutorials
      @ChipsterTutorials 2 года назад

      You could do enrichment analysis for the lists of differentially expressed genes.

    • @singhh5050
      @singhh5050 2 года назад

      @@ChipsterTutorials Awesome! Thank you for your help, I really appreciate it!!

  • @singhh5050
    @singhh5050 2 года назад

    If we use 5-15 PCs, then how do we represent all of these dimensions visually? I understand that with 2-3 dimensions we can put the data onto a single graph, so with this number of dimensions would we have to draw out many different graphs during the analysis stage? How would we present all of these dimensions in a research project?

    • @singhh5050
      @singhh5050 2 года назад

      Or do we put the large amount (5-15) of PCs into t-SNE and UMAP to further reduce dimensionality until we are able to create one singular 2-D graph (2 dimensions)?

    • @ChipsterTutorials
      @ChipsterTutorials 2 года назад

      You got it right! Chipster (and the corresponding Seurat vignettes) give you few different plots for estimating the (true) dimensionality of the data, i.e. how many PCs to use for the next steps of the analysis. These plots usually show one or two components at once, and for example the heatmaps are plotted for first 12 PCs by default (you can tune this). I suppose it would be enough to show some of the plots to justify the choice for the number of PCs. So PCA is step 1 in reducing the dimensions, so that clustering step won't take for ever and struggle with the excess of information. Different plots showing the PCs are there to help you to choose the number of PCs you want to continue the analysis with: whether it's 10, or 15, or 50 first principal components. After clustering, tSNE and UMAP are used for visualisation: to really show the data in 2D (step 2 in dimension reduction).

    • @singhh5050
      @singhh5050 2 года назад

      @@ChipsterTutorials Thank you so much!! Your guides are so helpful for beginners like me :)

  • @jieyang2441
    @jieyang2441 2 года назад

    Can I ask how did you draw the heatmap for each PC, what is exactly shown in the heatmap each PC ? I am really confused. Thank you a lot.

    • @ChipsterTutorials
      @ChipsterTutorials 2 года назад

      Of course you can, excellent questions! Those plots are from Chipster (chipster.csc.fi), but the codes within are pretty much directly from Seurat, so you can check the R-commands for example from here: satijalab.org/seurat/articles/pbmc3k_tutorial.html The heatmaps for the PCs show the "extreme" cells on the x-axis and "extreme" genes on y. They are "extreme" in their PCA scores, so those genes that basically best determine that particular principal component, i.e. the separation between the cells. Similarly for the cells: these cells "furthest away" (in the yellow or purple end) from each other on this spectrum of PC1. So what one might want to eye-ball with these plots is whether the genes reveal what that particular PC might be all about: for example, if the genes seem to be related to cell-cycle phase, one might want to consider regressing out that effect, or at least it's good to acknowledge this.

  • @paulocaldas8533
    @paulocaldas8533 2 года назад

    Summary: "AAAAAHAAAAHAHAHHAHUM ..."